21st Century Design for Life

Rachel Evans, Director of Digital Learning & Innovation, considers the impact of this year’s CPD on 21st Century Learning Design, evaluates the Social Robots project against the rubric and reflects on the value of this approach for teachers and students.

During the last term of this unprecedented school year, groups of teachers have been lifting their gaze beyond the challenge of the pandemic to reflect on the way we teach and learn. Since April, colleagues from the Junior and Senior Schools have been considering 21st Century Learning Design.(1) An academic research programme funded by Microsoft in 2010, the Innovative Teaching & Learning Research Project described and defined this pedagogical approach. Collaborative research was carried out across ten countries, with the Institute of Education in London as one of the partners. The outcome formed the basis of a framework for evaluating and designing schemes of work, and subsequently a programme of study for teachers.(2)


The six components of 21st Century Learning Design (21CLD)

21CLD is a lens through which we can view the planning and delivery of the curriculum – as broadly as across a whole topic, or down to the level of an activity within an individual lesson. The rubric-based approach across the six topic areas prompts teachers to think about how to effectively build skills which are not necessarily well understood or embedded by other pedagogical approaches. Whilst we may not accept the popular discourse about the necessity of ‘21st century skills’, the framework addresses the need for students to beopen to new ideas and voices, direct and be accountable for their own work, and conduct effective and meaningful collaboration: all skills which are valuable in a swiftly changing world.

A collaborative professional development opportunity

Teachers were assigned a module of the course to work through independently, and then came together in study groups to discuss the concepts and teach each other the module they had studied. This has proved an exciting way to learn about 21CLD and apply it to our own classroom practice. Mixed group discussions outside the silos of departments and key stages revealed how this pedagogy is applicable across different subject areas and age groups, and identified where there are connections with existing approaches, such as Kagan structures or Harkness method for communication and cooperation, and our STEAM+ interdisciplinary work.

The discursive approach allowed teachers to be candid about their experience. Delving into the detail of the rubrics brought self-reflection: one teacher saying “I thought we’d be brilliant at collaboration, but actually we often co-work rather than collaborate.” Teachers evaluated existing activities against the rubrics and considered how they could adjust their lesson plans and projects to create deeper engagement and more agency for their pupils, and substantive and meaningful work as a result. New plans for a science project about pollution and the revision of a history research topic are among the outcomes of this period of study. Junior School teachers investigated how different levels of the rubric might appropriate at different Key Stages: they plan to create examples of suitable activities to inform the planning of lessons which will develop skills over the pupil’s time in the infant and junior years.

The process was not uncritical, with much debate in both parts of the school around the knowledge construction module: balancing innovative approaches with the needs of the examination system and our own belief in the value of scholarship made for interesting conversations.

A real-life example of real-world problem-solving

As I studied the course myself and designed the programme for teachers, I evaluated one of my own projects.

The Social Robots Club, which the Head of Computer Science and I began two years ago, is an excellent example of real-world problem solving and collaboration within the 21CLD framework, which has arisen organically through the interests of a group of Year 10 students. You can read about their work in this week’s WimTeach[link], where the girls have written about their project and experiences.

The purpose of the club was to experiment with our Miro-E robots (3), in order to plan their inclusion in the curriculum. It is the students who have driven the project forward. From our early brainstorming about uses for the robots, they chose a goal, defined their project and set to work. How does this activity measure up as an example of 21st century learning?

Collaboration

Students work as a team, assigning roles for each task, and making their own decisions about the process and product. The work is interdependent – for instance, dividing up the writing of code into segments which will be later combined.

Skilled communication

Students have produced presentations for Junior school staff, a lesson plan for Year 5 pupils, surveys and a leaflet for parents and an assembly for the school community. They carried out academic research including writing to the authors of papers with further queries.

Knowledge construction

We had never used such sophisticated robotics at school previously, but the group are already competent coders, so are applying their knowledge. Research for the project has covered psychology, pedagogy and computer science – certainly interdisciplinary.

Self-regulation

This group of students have worked on this project for a year and are clear about their aims, and what success will look like. They plan their own work – in fact, Mr Richardson and I joke that we are superfluous! – but we are there, of course, to offer feedback and guidance to help the team make progress when the project stalls.

Real-world problem-solving and innovation

The project is problem solving on a macro and micro level. The real-world problem is about improving reading progress for primary age children, but every week is micro problem-solving as we navigate a new and unfamiliar coding interface and sophisticated but temperamental robots. The project will have a real-world implementation when the robots are used by Year 1 next year.

Use of ICT for Learning

Technology is crucial to the project, obviously, but most significantly, we will create a product for authentic users – a robot creature who will respond with encouragement to a child reading – a great deal of code will lie behind those simulated behaviours!

The benefits of 21st Century Learning Design

On a practical level, 21CLD offers teachers tools for creating learning activities which promote skills that we would all agree are essential for study, work and life – to communicate clearly, collaborate well and solve problems. When combined with our emphasis on scholarship and our interdisciplinary STEAM+ philosophy, I find three further important outcomes:

Building knowledge and appreciating complexity

In a fast-paced world, the experience of going deeply into a topic or project for a sustained period will develop sound knowledge and critical thinking skills. Grappling with complexity brings an appreciation that not all problems are solved or ideas best expressed with a sound-bite response. All fields of study are rich with nuance once we go beyond the superficial.

Identifying unknowns, living with uncertainty and resilience

The deeper students go into complexity, detail and a wealth of knowledge, the more aware they become of what is unknown, either to themselves or to others. In a year which has been filled with uncertainty, an awareness that what we understand of the world is not fixed or fully known is, at first, unsettling. Sitting with that uncertainty – whether academic or otherwise – can build resilience. As the students write in WimLearn this week, persevering through difficulty brings its own joys.

Curiosity and exploration

Having appreciated complexity and experienced uncertainty, where do we go next? We have the answer enshrined within our school aims: Nurturing curiosity, scholarship and a sense of wonder. To achieve sufficient mastery of an area of study that we can begin to push at the boundaries is where exploration and innovation happens; or, as we wrote at the start of this year (4), in the spaces and connections between traditional subject areas with our STEAM+ philosophy. Depth of study, knowledge and skill is a firm foundation for exploration.

In conclusion, the exploration of this course on 21st century learning design has been incredibly valuable. At a time when we have been caught in the weeds of logistics and change, the programme of study and our collaborative approach has opened up big ideas and new conversations between teachers, which we will continue to explore next year. This feels like the start of a new conversation about the way we use technology in the classroom.


References

(1) 21st Century Learning Design, Microsoft Educator Center, https://education.microsoft.com/en-us/learningPath/e9a3beec

(2) You can read the original research papers and other references here, within the Microsoft CPD course. https://onedrive.live.com/redir?resid=91F4E618548FC604%21300&authkey=%21AOE-MnST_ZCMc1Q&page=View&wd=target%28Embedding%2021CLD%20in%20practice.one%7C2989f197-22e1-42a9-b2d5-2a71628825c1%2F21CLD%20Readings%7Ce58d3c47-38fa-47da-9077-18571f525580%2F%29

(3) Miro-E are programmable social robots designed for us in schools. http://consequentialrobotics.com/miroe

(4) Bristow & Pett, STEAM+, http://whs-blogs.co.uk/teaching/steam-2/, September 2020

Does the Harkness Method improve our understanding of Maths?

Elena and Amelia, Y12 Further Mathematicians, explore how the Harkness Method has opened up a new way of thinking about Pure Maths and how it allows them to enhance their mathematical abilities.

For Further Maths A Level, the Maths department has picked a new style of teaching: the Harkness Method. It involves learning by working through problem sets. The problems give clues as to how to get to the answer and this is better than stating the rules and giving examples; we have to work them out ourselves. These problem sets are given for homework, and then we discuss them together during the next lesson by writing the answers on the board and comparing our results with each other.

Elena:

At the beginning of term, I found it quite challenging to complete exercises without knowing what rules I was expected to apply to the problems, as each question seemed to be completely different to the one preceding it. The tasks also require us to use our previous GCSE knowledge and try to extend it ourselves through trial and error and by applying it to different situations and problems. I found it difficult to understand how to apply a method to solve different problems as previously each problem came with a defined method.

Maths diagrams As the lessons progressed, I started enjoying this method of teaching as it allowed me to understand not only how each formula and rule had come to be, but also how to derive them and prove them myself – something which I find incredibly satisfying. I also particularly like the fact that a specific problem set will test me on many topics. This means that I am constantly practising every topic and so am less likely to forget it. Also, if I get stuck, I can easily move on to the next question.

Furthermore, not only do I improve my problem-solving skills with every problem sheet I complete, I also see how the other girls in my class think about each problem and so see how each question can be approached in more than one way to get the same answer – there is no set way of thinking for a problem.

This is what I love about maths: that there are many ways of solving a problem. Overall, I have grown to like and understand how the Harkness Method aims to challenge and extend my maths skills, and how it has made me improve the way I think of maths problems.

Amelia:

When I first started the Harkness approach for Pure Maths in September, I remember feeling rather sceptical about it as it was unlike any method of learning I had encountered before. To begin with, I found it slightly challenging to answer the questions without knowing what topic they were leading to and found confusing how each sheet contained a mixture of topics.

However, I gradually began to like this as it meant I could easily move on and still complete most of the homework, something which you cannot do with the normal method of teaching. Moreover, I found it extremely beneficial to learn the different topics gradually over many lessons as I think that this improved my understanding, for example for differentiation we learnt it from first principles which gave me the opportunity to comprehend how it actually works instead of merely just remembering how to do it.

Furthermore, I think that the best part of the Harkness Method is that you are learning many topics at a time which means that you cannot forget them as compared to in the normal method which I remember finding difficult when it came to revision for GCSEs as I had forgotten the topics I learnt at the beginning of Year 10. I also began to enjoy the sheets more and more because the majority of the questions are more like problem-solving which I have always found very enjoyable and helpful as it means you have to think of what you need to use instead of the question just simply telling you.

Moreover, I very much enjoyed seeing how other people completed the questions as they would often have other methods, which I found far easier than the way I had used. The other benefit of the lesson being in more like a discussion is that it has often felt like having multiple teachers as my fellow class member have all been able to explain the topics to me. I have found this very useful as I am in a small class of only five however, I certainly think that the method would not work as well in larger classes.

Although I have found the Harkness method very good for Pure Maths, I definitely think that it would work far less well for other parts of maths such as statistics. This is because I think that statistics is more about learning rules many of which you cannot learn gradually.

To what extent can Bitcoin replace Sterling?

Phoebe, Year 13, explores the use of Bitcoin as a currency and its potential to replace Sterling by discussing the limitations of the new currency.

Bitcoin is a cryptocurrency, which is a digital currency that uses cryptography for security, and a worldwide payment system. It is the first decentralized digital currency, meaning the system works without a central bank or single administrator. It is based on a special field of maths called cryptography which is the study of how to secure communications, this being one of the main issues with not having transactions being overseen by a central administrator. Bitcoins are created through the process of mining; where miners use special software to solve mathematical problems and are issued in exchange with bitcoins. So, to what extent does this new unregulated technology have the ability to replace sterling?

Despite the fact that Bitcoin supports the attractive libertarian utopia of a society free from government intervention, where welfare is cheaper and wealth more distributed, in reality Bitcoin currently does not pose a threat to the sterling. One of the major reasons that I will be focusing on is the unsustainable scale of computer computational power that is required in order for miners to verify transactions within the block chain system due to the increasing marginal costs for them. Miners are being imposed with a direct cost as they are forced to require more bandwidth to enable them to solve the increasingly difficult puzzles in the same time frame.

Distributed systems such as Bitcoin’s involve a negative externality that causes over investment in computer hardware as the expected marginal revenue from the individual miners is increasing with the amount of computing power that they individually have. Not only does this increase their own marginal cost but it increases the competition within the system and thus the cost is also increasing across the entire network. “Cetirus paribus” economic theory would suggest that in equilibrium all miners are inefficiently investing in hardware while receiving the same revenue that they would have had they not invested in the extra computing power. This behaviour is irrational as it is increasing the computing power across the entire network making it harder for them to succeed individually.

If the cost of verification for the miners is constantly increasing, then eventually the incentive to secure the network will disappear and lead to the collapse of the system.

Therefore, due to this increasing cost of mining, Bitcoin, in its current state, does not have the potential to replace sterling.

The importance of collaborative learning

How can we encourage collaborative learning? Alex Farrer, STEAM Co-ordinator at Wimbledon High, looks at strategies to encourage creative collaboration in the classroom.

Pupils’ ability to work collaboratively in the classroom cannot just be assumed. Pupils develop high levels of teamwork skills in many areas of school life such as being part of a rowing squad or playing in an ensemble. These strengths are also being harnessed in a variety of subject areas but need to be taught and developed within a coherent framework.  Last week we were very pleased to learn that Wimbledon High was shortlisted for the TES Independent Schools Creativity Award 2019. This recognises the development of STEAM skills such as teamwork, problem solving, creativity and curiosity across the curriculum. Wimbledon High pupils are enjoying tackling intriguing STEAM activities in a variety of subject areas. One important question to ask is what sort of progression should we expect as pupils develop these skills?

The Science National Curriculum for England (D of E gov.uk 2015) outlines the “working scientifically” skills expected of pupils from year 1 upwards. Pupils are expected to answer scientific questions in a range of different ways such as in an investigation where variables can be identified and controlled and a fair test type of enquiry is possible.

However, this is not the only way of “working scientifically”. Pupils also need to use different approaches such as identifying and classifying, pattern seeking, researching and observing over time to answer scientific questions. In the excellent resource “It’s not Fair -or is it?” (Turner, Keogh, Naylor and Lawrence) useful progression grids are provided to help teachers identify the progression that might be expected as pupils develop these skills. For example, when using research skills younger pupils use books and electronic media to find things out and talk about whether an information source is useful. Older pupils can use relevant information from a range of secondary sources and evaluate how well their research has answered their questions.

The skills that are used in our STEAM lessons at Wimbledon High in both the Senior and Junior Schools utilise many of these “working scientifically” skills and skill progression grids can be very useful when planning and pitching lessons. However, our STEAM lessons happen in all subject areas and develop a range of other skills including:

  • problem solving
  • teamwork
  • creativity
  • curiosity

Carefully planned cross-curricular links allow subjects that might at first glance be considered to be very different from each other to complement each other. An example of this is a recent year 10 art lesson where STEAM was injected into the lesson in the form of chemistry knowledge and skills. Pupils greatly benefited from the opportunity to put some chemistry into art and some art into chemistry as they studied the colour blue. Curiosity was piqued and many links were made. Many questions were asked and answered as pupils worked together to learn about Egyptian Blue through the ages and recent developments in the use of the pigment for biomedical imaging.

There are many other examples of how subjects are being combined to enhance both. The physiological responses to listening to different types of music made for an interesting investigation with groups of year 7. In this STEAM Music lesson pupils with emerging teamwork skills simply shared tasks between members of the group. Pupils with more developed teamwork skills organised and negotiated different roles in the group depending on identified skills. They also checked progress and adjusted how the group was working in a supportive manner. A skill that often takes considerable practise for many of us!

Professor Roger Kneebone from Imperial College promotes the benefits of collaborating outside of your own discipline. He recently made the headlines when he discussed the dexterity skills of medical students. He talks about the ways students taking part in an artistic pursuit, playing a musical instrument or a sport develop these skills. He believes that surgeons are better at their job if they have learned those skills that being in an orchestra or a team demand.  High levels of teamwork and communication are essential to success in all of those fields, including surgery!

Ensuring that we give pupils many opportunities to develop these collaborative skills both inside and outside of lessons is key. We must have high expectations of progression in the way that pupils are developing these skills. Regular opportunities to extend and consolidate these important skills is also important. It is essential to make it clear to pupils at the start of the activity what the skill objective is and what the skill success criteria is. It is hard to develop a skill if it is not taught explicitly, so modelling key steps is helpful as is highlighting the following to pupils:

  • Why are we doing this activity?
  • Why is it important?
  • How does it link to the subject area?
  • How does it link to the real life applications?
  • What skills are we building?
  • Why are these skills important?
  • What sort of problems might be encountered?
  • How might we deal with these problems?

Teacher support during the lesson is formative and needs to turn a spotlight on successes, hitches, failures, resilience, problems and solutions. For example, the teacher might interrupt learning briefly to point out that some groups have had a problem but after some frustrations, one pupil’s bright idea changed their fortunes. The other groups are then encouraged to refocus and to try to also find a good way to solve a specific problem. There might be a reason why problems are happening. Some groups may need some scaffolding or targeted questioning to help them think their way through hitches.

STEAM lessons at Wimbledon High are providing extra opportunities for pupils to build their confidence, and to be flexible, creative and collaborative when faced with novel contexts. These skills need to be modelled and developed and progression needs to be planned carefully. STEAM is great fun, but serious fun, as the concentration seen on faces in the STEAM space show!

Twitter: @STEAM_WHS
Blog: http://www.whs-blogs.co.uk/steam-blog/